Introducing a Distributed Cloud Architecture with Efficient Resource Discovery and
Optimal Resource Allocation

Praveen Khethavath, Johnson Thomas, Eric Chan-Tin and Hong Liu
Computer Science
Oklahoma State University
Email: {khethav, jpt, chantin, liuh}@ cs.okstate.edu

Abstract—Cloud computing is an emerging field in computer
science. Users are utilizing less of their own existing resources,
while increasing usage of cloud resources. With the emergence
of new technologies such as mobile devices, these devices are
usually under-utilized, and can provide similar functionality to
a cloud provided they are properly configured and managed.
This paper proposes a Distributed Cloud Architecture to make
use of independent resources provided by the devices/users.
Resource discovery and allocation is critical in designing an
efficient and practical distributed cloud. We propose using
multi-valued distributed hash tables for efficient resource
discovery. Leveraging the fact that there are many users
providing resources such as CPU and memory, we define these
resources under one key to easily locate devices with equivalent
resources. We then propose a new auction mechanism, using a
reserve bid formulated rationally by each user for the optimal
allocation of discovered resources. Then we discuss how the
Nash Equilibrium is achieved based on user requirements.

Keywords-Cloud Computing, Distributed Cloud, Auction
Game, Resource Allocation, Resource Discovery, Game Theory.

I. INTRODUCTION

Cloud computing [1] is a common terminology used in
both business and academic fields. Cloud computing refers
to a different way of computing over the Internet where dy-
namically scaled shared resources are provided as a service
to avoid costs of resource over-provisioning [1,2,3]. Many
companies are now relying and performing their operations
in the “cloud”. Current cloud architectures provide both
storage and computation services for users. Cloud computing
is a combination of several concepts including virtualization,
resource pooling, resource monitoring, dynamic provision-
ing, utility computing, multi-tenancy, and elasticity. The
main entities of cloud computing are service providers, phys-
ical resources, virtualized resources, and end-users. Existing
cloud architectures are centralized; the virtualized resources
are hosted on one (or more) physical machines usually
located in the same data center. This provides a single point
of entry and has the potential to introduce limited bandwidth,
higher latency, and increased network traffic. Moreover,
as users’ computational needs are unknown, the physical
resources are “shared” and virtualized among all the users.
Thus, current clouds over-provision available resources to

meet potential needs. This centralized nature introduces a
waste of resources, high energy consumption, and increased
distance to end-users.

With more people using cloud services, these people’s
individual machines which can be a PC, Laptop or a server
which is capable of running VM’s are under-utilized in terms
of resources. These unused resources (for example, idle
CPU time and unused memory) can be utilized to perform
other people’s computations. We introduce the notion of a
distributed cloud. As far as we know, we are the first to intro-
duce such a system, with an efficient resource discovery and
optimal resource allocation algorithm. The distributed cloud
overcomes the downsides of existing cloud architectures,
as there is no central entry point and all the resources are
distributed. There is no waste of over-provisioned resources,
and with the distributed nature, it is possible to find a
“cloud machine” geographically close to every user. Our
proposed distributed cloud is different from geographically-
distributed data centers[18] cloud system, as each machine is
an individual user’s device and not a dedicated central server.
Distributed cloud [5] computing refers to the managing
and provisioning of distributed resources. We describe the
distributed resources provided by users in a completely
decentralized fashion, instead of huge data centres located
in one or multiple locations. Moreover the proposed system
provides a completely decentralized mechanism for discov-
ering and allocating resources.

The distributed cloud should have all the characteristics
of existing cloud architectures, including proper manage-
ment of resources, data security, data privacy, and trust.
In addition, the distributed cloud provides scalability and
reduces the network constraints, as all the resources are
completely decentralized. Moreover, network latency is im-
proved because it is possible to discover a compute node
close to every user. The distributed cloud would also be free
of cost as end-users share their available resources. There
are many challenges in the design of a distributed cloud,
such as ensuring integrity of the computation, privacy of the
computation, and fair resource sharing. The challenges also
include those faced by decentralized systems such as peer-
to-peer systems. This includes free riding, bad mouthing,

misrouting, and advertising fake resources. The benefits of a
distributed cloud are numerous and the deployment of such
a system will have huge societal impacts. The distributed
cloud can consist of billions of compute nodes, with a very
low-cost to a user donating its machine and resources.

In this paper, we introduce the core design of a distributed
cloud. We will address two main issues, efficient resource
discovery, and optimal resource allocation, and leave the
rest of the challenges for future work.

In a distributed cloud, there are many machines/nodes and
each node has different available resources. Each node only
knows a subset of all the nodes in the cloud. Knowing
all the nodes is infeasible as it would require gathering
information about the whole Internet. A user wants to
perform a certain computation which requires a certain
amount of resources (either processor power or amounts
of memory). The user needs to locate enough nodes that
match its resource requirements, such that the computation
can be completed. We propose a multi-valued distributed
hash table (DHT) scheme that would allow for an efficient
discovery of resources. Existing DHTs [8,9,10] only work
for single dimensional queries (one key-value pair). For
the proposed distributed cloud, there are multiple queries
which can satisfy the user’s requirements. The problem of
discovering resources in decentralized systems with multiple
attributes can be handled using range queries. Many range
query schemes[23,24] have been proposed for peer-to-peer
and grid systems for data retrieval. Since these range query
schemes are built over existing architectures and works
by flooding the queries over network using different tech-
niques[24], they introduce a large overhead and can only be
used for data management. Thus, existing DHTs cannot be
used in the distributed cloud to efficiently discover available
nodes with the required resources to perform the desired
computation. Computing resources have many fine grained
constraints that needs to be considered, such as processor
and memory. The machines with resources that fulfill at
least the minimum requirements of the user need to be
discovered. A subset of these machines can then be used to
perform the computation. The proposed multi-valued DHT is
more efficient than current known systems for a completely
distributed cloud. When a new node joins its information is
updated to all the nodes using the kademlia protocol [8].

Other than the discovery of resource, the resource alloca-
tion needs to be considered. There are many users wanting
to perform various computations. A node resource could be
discovered and asked to perform computation by many users.
The node has to allocate its resource optimally to serve the
maximum number of users. It also has to consider the par-
ticipation factor of the user and the throughput required for
the computation. The resources can be optimally allocated
based on the user requirements. Therefore there is a need for
an efficient strategic mechanism to allocate resources. Game
theory[6,7,21], a strategic decision-making mechanism, can

be used for allocating resources optimally such that all users’
requirements are met. We introduce an auction model, where
providers bid for resource provisioning. By introducing in-
centives, our model encourages providers to compete for re-
sources and consider participation of users when determining
the allocation of resources. The more resources provided by
users, the more they can use the other distributed resources
in the system. The system will then schedule resources such
that the whole distributed cloud’s resources are optimally
used. The incentive-based auction model is utility driven,
where the utility is calculated from user’s requirements,
such as the participation factor, processor information, and
available memory. In the proposed model, there are N users
in the system, and each resource can be allocated to only
one user at a time. The model will be shown to be optimal
and a Nash equilibrium can be achieved. The model can be
further extended to include other user requirements.

The rest of the paper is organized as follows. Section II
describes the related work about cloud computing and peer-
to-peer system, which both constitute major components to a
distributed cloud. Section III describes the proposed design
for an efficient resource discovery in a completely decen-
tralized system. The game theoretical approach for optimal
resource allocation in a distributed cloud environment is
described in Section IV. We conclude in Section V and
provides further avenues for future work.

II. RELATED WORK

Cloud Computing. Virtualization [4] is a key concept used
in cloud computing. Xen [4] is a popular virtualization
management tool used by many cloud service providers.
Hyper-V, KVM, and Sun xVM are some of the other
virtualization management tools commonly used. Different
cloud providers use different programming frameworks for
their cloud. For example, Amazon uses Amazon Machine
Interface, Google uses Map reduce, Sun uses Solaris OS
and Java, Azure uses Microsoft.NET, and open clouds such
as Eucalyptus and Open Nebula, use Hibernate, Axis2,
Java, and Ruby. There is no specific framework or re-
quirements for cloud computing architectures. All cloud
providers provide services defined by service models such
as Infrastructure as a Service (IaaS), Platform as a Service
(Paas), and Software as a Service (SaaS). Currently all cloud
providers rely on huge data centers and are predominantly
centralized [1, 2, 5, 6].

Distributed Computing. Distributed or grid computing
[15,16,17] uses multiple autonomous computers over a
network to solve computational problems as one single
unit. Allocation of resources in distributed computing to
solve a specific task is NP-hard [13, 14]. There have been
many models developed to optimize the resource allocation
problems in distributed computing. In distributed computing
environments, there are many machines distributed around
the world. However, there is a central server that contains

information about all these machines and schedules com-
putations. The scalability of distributed computing is in the
thousands of machines and resources. Although cloud com-
puting and distributed computing share a lot of similarities, a
distributed cloud computing architecture requires a different
environment to operate efficiently and securely. A distributed
cloud can scale to billions of devices and it is infeasible for
one machine to learn about all available resources in the
cloud. Moreover, multiple users are concurrently scheduling
heterogeneous computations.

When it comes to modeling, there is no specific cloud
resource description framework which can be used to de-
scribe the resources in the cloud (distributed or centralized).
Computer networks and their resources can be described
using many existing frameworks such as RDF[25] (resource
description framework) or the network description language.
In a distributed cloud computing environment we need a spe-
cific resource description which can be used for identifying
the resources and allow users to request resources clearly.
This resource description is needed by the distributed cloud
to perform resource discovery and resource allocation.

11..11 Space of 160-bit numbers

00...00

Figure 1. Kademlia routing table.

Peer-to-peer Systems. Content distribution and file sharing
was made possible by peer-to-peer systems[11]. Current
peer-to-peer systems [8,9,10] use a distributed hash table
(DHT) for efficient query lookups. These systems are able to
handle churn, node failures, flash crowds, and balance load
efficiently. Kademlia [8] is a popular peer-to-peer protocol
used by millions of people daily [19,20]. Kademlia has been
shown to provide efficient query lookup and publishing; with
a total of N peers in the network, a query takes on average
O(logN) hops[8] to find the requested peer. Every peer in
Kademlia has a 160-bit node ID. The ID is either randomly
created or generated from the IP address. Every peer also
has a routing table which contains a subset of all the peers
in the network. The routing table is a binary tree, as shown
in Figure 1. Let’s say peer A’s node ID is 100101 (actual
node ID would be 160 bits long). The black dot in the figure
shows a peer B in A’s routing table. The first four bits of
B’s node ID is 1010. The first two bits are the same as
A and the next two bits are different. Routing is performed

using the bit-wise XOR metric where the XOR between two
node IDs gives the distance between thse two peers. Since a
peer A only knows a subset of other peers, before it can find
another peer (with node ID T'), A has to perform a lookup
query. Routing steps are illustrated in Figure 2. To improve
effectiveness, the routing table is an unbalanced binary tree,
where every peer knows more peers closer to itself in terms
of XOR distance, than peers further away. Moreover, instead
of storing one contact in its routing table at each “leaf”, k
contacts are stored in a k-bucket.

User=A
Message=M
T = hash(M)

@

Figure 2. Routing in a distributed hash table steps: 1) User A
contacts B, the closest node to 7" in A’s routing table; 2) B replies
with C, the closest node to T' that B knows about; 3) A contacts
C; 4) C replies with F, 5) A contacts E and finds that F is the
closest node to T'; 6) A sends the request message M to E.

Game Theory. Game theory [6,21], a strategic decision-
making methodology, has been extensively used in wireless
networks, peer-to-peer systems, grid computing, and in many
scientific systems. Game theory is used in many areas such
as resource allocation, optimizing and improving decision
making. There are many different types of games such as
non-cooperative games, cooperative games, Bayesian games,
differential games, evolutionary games and auction theory
and mechanism design. We can use any of these games based
on the requirement and type of information available. There
is no work done as far as we know on distributed cloud using
game theory. Game theory has been used in existing cloud
computing technology for resource allocation [7,26] such
that total payment is reduced for the user. In [26] the author
talks about a game theoretical resource allocation in existing
cloud computing based on tasks its receive and availability
of resources such that users utilization is maximized. In
existing cloud users need to select resources even before they
start using it and instances are already defined in existing
cloud. Different types of games are used and cost was

the basis for these games. We introduce an incentive-based
mechanism and efficient resource allocation in our proposed
model of distributed cloud computing.

III. RESOURCE DISCOVERY

The proposed distributed cloud will have geographically
distributed resources which will be accessed in a decentral-
ized peer-to-peer fashion. As far as we know, we are the
first in designing an efficient resources discovery scheme
for computing in a distributed cloud. The distributed re-
sources have many characteristics which should be defined
properly. These characteristics would be not only useful for
identifying and analysing user requirements properly but
would also help to locate resources accurately as needed.
The attributes we consider for now are 1) the node ID,
which is a unique identifier for each peer, 2) the resource
processing power, measured in gigahertz, and 3) the resource
of memory available, measured in gigabytes.

A. Naive Solution

A simple and naive solution to the problem of resource
discovery in a distributed cloud, is making modifications to
the original Kademlia algorithm to handle multiple attributes
(resources). The node ID can be changed to include the
resources information. Recall from Section II, routing in
Kademlia is performed using the XOR metric. Peers with
similar first few bits in their IDs are “close” to each other.
The resource information can be encoded into the node ID.
Instead of the node ID being generated from the IP address
only, the node ID is generated using both the resource
information and node ID. However, for resource discovery
to be possible, the node IDs have to be of some structure,
such as peers with similar resources are close to each other
in terms of node ID space. The information representing
the resources can be prepended to the original node ID, as
follows:

NodelD = Bits assigned for attributes + Nodel D

where + indicates concatenation.

For example, we first decide the resource attributes needed
and then assign bits for each attribute. If the two resources
under consideration are processing power (CPU) and amount
of memory, 3 bits can be assigned for CPU (for a maximum
of 8 Ghz) and 5 bits can be assigned for memory (for a
maximum of 32 GB). We then concatenate all these bits
together and with the original node ID. If the original node
ID size is n bits, the new node ID size is 3+5+n=8+n
bits.

Nodel D = 3bitsC PU + 5bits formemory + Nodel D

This new node ID is used to represent and locate peers.
The routing table and routing mechanism stay the same.

Each ID is now 8 bits bigger and the overhead is only 8§,
which is small compared to the original ID size of 160 bits.
When a user requests for a node with a list of required
resources, the user first calculates the first 8-bits, which
indicate the resources needed. The peers which match these
first 8-bits are located, and the remainder of the routing
process is performed using the original Kademlia algorithm.
Peers with the same first 8-bits are closer together and they
all have the same available resources.

The main problem with this solution is that it matters
which resource is prepended first. In the example above, if a
user only requires a certain amount of memory, many query
lookups are needed to discover all possible peers. Moreover,
the size is fixed. If a user wants to share more than 32 GB
of memory, the change is not incrementally deployable and
the whole system needs to be updated. Finally, the IDs are
not sorted. For example, an ID with 3 Ghz of CPU and 1
GB of RAM is located after an ID with 2 Ghz of CPU and
5 GB of RAM, in terms of XOR metric.

B. Proposed Solution

The proposed solution for resource discovery in a dis-
tributed cloud is to use a new concept of local multi-
valued hash table. The main idea is to use two different
hash tables: one for finding the node location, and one for
resource discovery in the distributed cloud. Every node will
have two node IDs: one to determine the resource location
and another to determine the attributes of a resource. The
Kademlia protocol will be used to find the node location;
the first DHT behaves exactly as described in Section II. In
the proposed approach, the k-buckets in the routing table
are used to store the routing information. Each k-bucket’s
contact contains the following information: IP address, port
number, and Kademlia node ID, known as nodelDI. Each
node will also store a set of local multi-valued hash values
of all the nodes in a k-bucket with their IDs generated from
the resource attributes. Every node therefore has a Kademlia
routing table and a set of local multi-valued node IDs, known
as nodelID2. Each node will store the mapping information
<nodelD2, set of nodeID1>, where nodeID1 and nodelD2
are generated as follows

nodel D1 = hash(IPAddress)
nodel D2 = hash(C PU, memory)

where hash is a one-way function.

Resource discovery in this model is done by routing
to the nearest nodes and finding all the possible nodes
which satisfy the user requirement of resources needed. For
example, if the two attributes of CPU and memory, nodeID2
is calculated by hash(CPU, Memory) and the values for
nodelD2 will be a set of nodeID1. Thus, nodeID2 maps
to many different nodeID1. Peers with similar resources
are stored under the same key nodelD2. The nodelD2

determines available resources and the nodelD1 is used for
routing.

n
C
P
U

Ghz 3

2

1

0

0 1 2 3 m
Memory GB
Figure 3. A user requests 2 Ghz of CPU and 2 GB of memory;

all peers with resources of at least (CPU, Memory) = (2, 2) need
to be discovered. These peers are in the shaded area.

All the attributes can be seen in a n-dimensional space.
If 2 attributes are considered, they can be plotted using a
bilinear interpolation or represented as a matrix. Figure 3
represents a peer trying to discovering peers with at least
2 Ghz of CPU and at least 2 GB of memory. This is
represented by the location (2,2). When a user requests
for a resource with 2 GB of memory and 2 GHz CPU,
from the figure, all the peers in the shaded region have
(CPU, memory)> {2GHz,2GB} and can satisfy the user
requirements. The algorithm in Figure 4 is used to find all
these nodes from the shaded region which can satisfy user
requirements.

Algorithm: To find resources
//User requests for resources with n-CPU and m-Memory.

nodelD2=hash(n,m); //Find Node ID 2
//Find all resources which can satisfy user requirements
Checklist=FindAll{nodeiD2);
1. Foreach nodelD2 in CheckList {
Finallist.find(nodelD2)
/fuser send this message to all the closest nodes in his k-bucket
If reply contains nodelD2
//if a node contains nodelD?2 get set of nodelD1 associated with nodelD2
FinalList.Add (nodelD1); //Add nodelD1 set to final list
//Check the resultant count of nodes found
If (FinalList.Size() > threshold)
return FinallList //stop searching
End For
//Request other nodes in routing table if enough nodes are not found
Kademlia_FindNode(CheckList): Goto->1.

Figure 4. Resource discovery model using multi-valued hash tables.

Using the distributed cloud, users can request for a single

resource or set of resources. There will be N resource
providers which are the nodes in the peer-to-peer network.
Currently, the two major attributes for resource discovery are
CPU and memory. When a user requests for a resource with
n CPU and m memory, the scheme creates a list of nodeID2
that satisfies user requirements. Each of the ID in this list has
CPU and memory greater than or equal to n+¢ and m + ¢,
where ¢ is a threshold indicating how much additional CPU
and memory are acceptable for efficient allocation. Then
nodelD2 is used to obtain a list of nodeID1. The user then
searches his routing table for nodeID2. If nodelD2 is found,
the user obtains a set of peers with IDs of type nodelDI.
If the number of nodes found reaches the threshold level,
the user stops querying for more nodes. Otherwise the user
sends a request to find nodeID2 to other nodes in its routing
table and repeats the process until the number of peers found
that meets the requirements, exceeds the threshold.

As an example, a user wants to perform a computation in
the distributed cloud that requires 2GHz CPU and 2GB of
memory. These are the steps performed to discover all the
peers with these requested available resources.

1) Calculate nodel D2 = hash(2,2).

2) Create set CheckList; find all other nodeID2 that can
satisfy user requirements, that is (cpu, memory) as
(2,2),(2,3),(3,3),(3,2),...,(2+t,2+t).

3) Check the routing table for nodes with initial nodeID2.
If found, add corresponding values {nodelD1°‘s} to the
set FinalList.

4) Check size of FinalList. If enough nodes are found,
start with resource allocation. Else, repeat the process
for other nodes in CheckList.

5) If there are not enough nodes that can satisfy user
requirements, send a request to find nodeID2 in Check-
List to nodes in the routing table and repeat the whole
process.

Since Kademlia is used, the whole process can be per-
formed concurrently. Moreover since we use a multi-valued
hash table to maintain information about attributes corre-
sponding to each node, there is no need to update the original
node ID. We need not flood the network with queries to find
the node with attributes required as done in range queries
for grid services[24]. We see this model works because we
insert information regarding nodes and their attributes into
multi-valued hash table as we build the routing table and
use that information for resource discovery. This way we
can use nodelD2 to query instead of long XML queries
used by range queries[23,24]. Once the resources are found,
resources are allocated based on a game theory model, as
discussed in the next section.

IV. RESOURCE ALLOCATION

The proposed model is to use an auction for optimal
resource allocation in the distributed cloud. An auction
consists of the following: 1) The resource to be allocated,

2) an auctioneer, who determines the resource allocation;
in the model, the auctioneer is the user, and 3) the bidders,
who provide resources in the distributed cloud; in our model,
they are the resource providers. In the game, the players are
the bidders and the auctioneers. The main advantage of this
type of game is that there are no centralized computations;
everything fits within our proposed distributed cloud archi-
tecture.

The rules for this auction mechanism are described below.
Since the distributed cloud is based on the resources supplied
by users, it is free of cost to use. Therefore we need to
have a participation factor for each user to avoid the selfish
behavior of users. Participation factor shows how much a
user has contributed to the system. How the participation
factor is calculated is left as future work. In this game,
it is assumed that a participation factor can be obtained.
The bidders are the resource providers as they try to get
incentives for providing the resources and try to increase
the participation factor which would be useful when they
look for resources.

o Information: The information both players knows are
about resource description, that is,CPU, memory, par-
ticipation factor, latency, and throughput. The auction-
eer knows about the latency and throughput from the
measurements made by the bidders.

o Bids: Bidders submit their bids to the auctioneer. Bids
constitute the amount of resources the bidders are
willing to provide along with the incentives they need
for providing them.

o Allocation: Based on the bids the auctioneer calculates
the utility function from the information known. Using
this utility function, the scheme allocates the user’s
resources. The utility function shows the value of
resources assigned to the user.

« Payments: Since our model of distributed cloud is free
of cost, we have a participation factor, d, assigned to
each user, and incentives to encourage users to provide
resources.

In this type of auction, the bidder with the highest bid
is not necessarily the winner. User ¢ chooses the resources
based on the bids and allocates these resources to the
user rationally. Each user requesting a resource would not
receive ideal resources if its participation factor is low.
Users need to provide higher incentives initially to raise
their participation factor. The user announces the reserve bid
B > 0. The reserve bid is defined as the most economical
bid which makes sure that the user gets his resources such
that latency is minimized, throughput is maximized, and
meets his requirements. The reserve bid is calculated taking
into account all the bids with latency and throughput, with
participation factor as major contributing factor. The bids
which are closer to 5 wins. Typically each provider submits
the bids to maximize their participation factor. The reserve

bid is calculated based on the type of resources requested
and their attributes.

A bidding profile is a vector of player bids b =
{b1,ba,...,br }. The bidding profile of user i is represented
as b; and bidding profile of the opponent of user i is
defined as b_; = {by, ..., b;—1,bi41, ...br } which implies that
b = {b;;b_;}. User i chooses a resource based on the
allocation rule where the utility is defined as

Ui(bi; b—4,0) = (latency;, throughput;, §) =

Game theory is a strategic mechanism of decision making.
In this auction game there are two different mechanisms
based on the type of the resources requested by the user.
Bidding strategies or auction mechanisms are different based
on the type of resources requested; for example whether
it is for high performance computing or for high through-
put computing. The game is described by considering the
homogeneous behavior initially, that is, assuming resource
providers are submitting their bids to one user. After the
bidding is completed, the utility is calculated based on the
user requirements, calculated participation factor, latency
or throughput, depending on the type of computing being
performed.

In a homogeneous system, only one user is requesting a
resource at a particular point of time. Then the desirable
outcome would be a bidding profile for which the utility
function would be closer to 3 and is called the Nash
Equilibrium for the game, where no user can unilaterally
deviate, that is,

Us(bi;0%,0) = Ui(bi; b7

—is

5),Vi € N,Vb; >0

This auction mechanism will therefore consider the type of
resources requested to allocate the resources optimally. The
users who provide their resources will be receiving some
kind of incentives such as computing with higher priority.
The incentives would be based on the participation factor.

V. CONCLUSION AND FUTURE WORK

We proposed a novel distributed cloud computing frame-
work. Two main issues in the design of a distributed cloud
are addressed: discovery of resources and allocation of re-
sources. An efficient resource discovery algorithm is shown,
using multi-valued hash tables. Moreover, the resource allo-
cation is optimal based on the Nash equilibrium obtained
from the auction game model. The notion of distributed
cloud is an emerging one and the implementation and
deployment of such a system would have huge societal
impacts. A user can potentially harness the computing power
of billions of machines.

As future work, as plan on continuing to address these two
issues and build on them. Simulation and other experiments
need to be performed to show its efficiency compared to
existing schemes and its effectiveness in general. The game

theory model will also be extended to include heteroge-
neous peers. The auction mechanism will be simulated to
determine whether resources are appropriately allocated and
whether the utility of the whole network is optimized. Other
issues we plan to look at include data replication [22] and
efficient VM migration as nodes may enter and leave at any
time. We also intend to look into peer-to-peer system issues,
computation privacy and security.

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony
Joseph, Randy Katz, Andrew Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica and Matei Zaharia, Above
the Clouds: A Berkeley View of Cloud Computing, Technical
report EECS-2009-28, UC Berkeley, 2009

[2] Peter Mell and Timothy Grance, NIST definition of cloud
computing, National Institute of Standards and Technology,
January, 2011

[3] Buyya, R. and Chee Shin Yeo and Venugopal, S.,Market-
Oriented Cloud Computing: Vision, Hype, and Reality for De-
livering IT Services as Computing Utilities, High Performance
Computing and Communications, 2008. HPCC’08. 10th IEEE
International Conference on. IEEE, 2008.

[4] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Warfield, A. (2003, October)., Xen and the art of
virtualization., In ACM SIGOPS Operating Systems Review
(Vol. 37, No. 5, pp. 164-177). ACM.

[5] Endo, P. T., de Almeida Palhares, A. V., Pereira, N. N.,
Goncalves, G. E., Sadok, D., Kelner, J., Mangs, J. (2011). Re-
source allocation for distributed cloud: concepts and research
challenges, Network, IEEE, 25(4), 42-46.

[6] Han, Zhu, Dusit Niyato, Walid Saad, Tamer Basar, and Are
Hjorungnes, Game theory in wireless and communication
networks: theory, models, and applications. Cambridge
University Press, 2011.

[7] Wei, Guiyi and Vasilakos, Athanasios V and Zheng, Yao
and Xiong, Naixue,”"A game-theoretic method of fair resource
allocation for cloud computing services.”, The Journal of
Supercomputing 54.2 (2010): 252-269.

[8] Maymounkov, Petar and Mazieres, David, Kademlia: A Peer-
to-Peer Information System Based on the XOR Metric, Peer-
to-Peer Systems (2002): 53-65

[9] Stoica, Ion, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan, "Chord: A scalable peer-to-peer lookup
service for internet applications.”, ACM SIGCOMM Com-
puter Communication Review 31, no. 4 (2001): 149-160.

[10] Rowstron, Antony I. T. and Druschel, Peter, Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems, — Middleware '01: Proceedings of the
IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg,2001.

[11] Fletcher, George and Sheth, Hardik and Borner, Katy, "Un-
structured peer-to-peer networks: Topological properties and

search performance.”, Agents and Peer-to-Peer Computing
(2005): 14-27.

[12] Chan-Tin, Eric, and Nicholas Hopper, "Accurate and provably
secure latency estimation with treeple.”, Proceedings of ISOC
Symposium of Network and Distributed Systems Security
(NDSS). 2011.

[13] Fernandez-Baca, David,"Allocating modules to processors
in a distributed system.", Software Engineering, IEEE
Transactions on 15.11 (1989): 1427-1436.

[14] Urgaonkar, Rahul, et al.,"Dynamic resource allocation and
power management in virtualized data centers.", Net-
work Operations and Management Symposium (NOMS), 2010
IEEE. IEEE, 2010.

[15] Anderson, David P., et al.,"SETI@ home: an experiment in
public-resource computing.”", Communications of the ACM
45.11 (2002): 56-61.

[16] Thain, Douglas, Todd Tannenbaum, and Miron Livny, "Dis-
tributed computing in practice: The Condor experience.”,
Concurrency and Computation: Practice and Experience 17(2-
4) (2005): 323-356.

[17] Attiya, Hagit, and Jennifer Welch, Distributed computing:
fundamentals, simulations and advanced topics., Vol. 53.
Wiley, 2004.

[18] Church, Kenneth, Albert Greenberg, and James Hamilton.
"On delivering embarrassingly distributed cloud services.",
Hotnets VII 34 (2008).

[19] Kulbak, Yoram, and Danny Bickson. "The eMule protocol
specification.”" eMule project, http://sourceforge. net (2005).

[20] VUZE, http://www.vuze.com/corp/technology.php

[21] Hausheer, David, and Burkhard Stiller, "Peermart: The tech-
nology for a distributed auction-based market for peer-to-peer
services.”, Communications, 2005. ICC 2005. 2005 IEEE
International Conference on. Vol. 3. IEEE, 2005.

[22] Martins, Vidal, Esther Pacitti, and Patrick Valduriez. "Survey
of data replication in P2P systems." 2006.

[23] Ganesan, Prasanna, Beverly Yang, and Hector Garcia-Molina.
"One torus to rule them all: multi-dimensional queries in P2P
systems.", Proceedings of the 7th International Workshop on
the Web and Databases: colocated with ACM SIGMOD/PODS
2004. ACM, 2004.

[24] Andrzejak, Artur, and Zhichen Xu. "Scalable, efficient range
queries for grid information services.", Peer-to-Peer Com-
puting, 2002.(P2P 2002). Proceedings. Second International
Conference on. IEEE, 2002.

[25] Klyne, Graham, Jeremy J. Carroll, and Brian McBride. "Re-
source description framework (RDF): Concepts and abstract
syntax." , W3C recommendation 10 (2004).

[26] Teng, Fei, and Frédéric Magoulés. "A new game theoreti-
cal resource allocation algorithm for cloud computing. " ,
.Advances in Grid and Pervasive Computing. Springer Berlin

Heidelberg, 2010. 321-330..

